Linear models

  1. Linear Regression: Modelo lineal para regresión
    • How to split the data between training and test
    • Ordinary Least Squares
    • Analyzing the results of the model
  2. Logistic Regression: Modelo lineal para clasificación
    • Sigmoid function
  3. Regulated linear models (Penalized regression)
    • LASSO Regression (L1 Regularization)
    • Ridge Regression (L2 Regularization)
    • ElasticNet Regression (L1 & L2 Regularization)
    • LARS: Least-Angle Regression
  4. SGD: Otra forma de modelos lineales
    • Perceptron
    • Vowpal Wabbit
  5. Variantes No Lineales
    • Regresión Polinómica
    • Generalized Additive Models (GAM)

Sowftware

Modelos lineales

  Sklearn (CPU) RAPIDS (GPU)
Linear Regression sklearn.linear_model.LinearRegression cuml.LinearRegression
Logistic Regression sklearn.linear_model.LogisticRegression cuml.LogisticRegression
Ridge Regression sklearn.linear_model.Ridge cuml.Ridge
Lasso Regression sklearn.linear_model.Lasso cuml.Lasso
ElasticNet Regression sklearn.linear_model.ElasticNet cuml.ElasticNet
MiniBatch SGD Classifier sklearn.linear_model.SGDClassifier cuml.MBSGDClassifier
MiniBatch SGD Regressor sklearn.linear_model.SGDRegressor cuml.MBSGDRegressor
Mutinomial Naive Bayes   cuml.MultinomialNB
Stochastic Gradient Descent   cuml.SGD
Coordinate Descent   cuml.CD
Quasi-Newton   cuml.QN
Support Vector Machine Classifier   cuml.svm.SVC(kernel="linear")
Support Vector Machine Regressor   cuml.svm.SVR(kernel="linear")

Modelos lineales parecidos

| | Sklearn (CPU) | RAPIDS (GPU) | |————————————|——————————————-|———————————| | Support Vector Machines Classifier | | cuml.svm.SVC(kernel=”rbf”) | | Support Vector Machines Regressor | | cuml.svm.SVR(kernel=”rbf”) | | Nearest Neighbors Classification | | cuml.neighbors.KNeighborsClassifier | | Nearest Neighbors Regression | | cuml.neighbors.KNeighborsRegressor |

Clasificación o Regresión?

4. Descenso por Gradiente (SGD)