Bloque 1: Introducción
Tools |
|
---|---|
🐍 Python |
|
🔢 Numpy |
|
🐼 Pandas |
|
Introducción al Machine Learning |
|
---|---|
Definir el problema y métrica | |
Obtener datos de entrenamiento y validación | |
Preprocesar datos | |
Seleccionar modelo | |
Optimización de hiperparámetros | |
Metrics |
Bloque 2: Modelos de ML/DL
Tree-based models |
|
---|---|
🌳 Decision Tree (CART, C4.5, M5) |
|
🌳 Random Forest & Extra Trees |
|
🌳 Gradient Boosting (XGBoost, LGBM, CatBoot) |
|
Linear models |
|
---|---|
Linear Regression |
|
Logistic Regression |
|
Regularization (Ridge, Lasso, ElasticNet) |
|
Polynomial Regression |
|
Generalized Additive Model (GAM) |
|
Neural Networks |
|
---|---|
Multi Layer Perceptron (MLP) |
|
Convolutional Neural Network (CNN, ResNet) | |
Recurrent Neural Network (RNN, LSTM, GRU) | |
Transformer (BERT, GPT, TabNet) | |
🔧 Hyperparameters | |
🥪 Layers Glossary |
Ensembling |
|
---|---|
Weighted average, Majority vote,... |
Bloque 3: Aplicaciones reales de ML/DL
Tabular |
|
---|---|
🚗 Precio de coches de 2a mano |
|
Time Series |
|
---|---|
Prophet (Walmart) |
|
Prophet (Medium) |
|
TSFresh + Sklearn |
|
Collaborative filtering |
---|
Natural Language Processing (NLP) |
|
---|---|
Bag of Words + LogRegr with Sklearn |
|
TFIDF + LogRegr with Sklearn |
|
🔈 Audio |
|
---|---|
🔈 Mel Spectogram |
|
🔈 Audio classification (with data aug) |
|
🎨 Image generation![]() |
|
---|---|
✂️ Semantic Segmentatition |
|
✂️👩💼 Binary Segmentation (Portrait mode) |
|
🔲✂️ Instance Segmentatition | |
GANs | |
🖼️🪄 Image enhacement | |
🦯 Depth Segmentation | |
📃📄 Document unwarp |
🎥 Video |
|
---|---|
〰️ Object Tracking | |
〰️ Optical Flow | |
Background Removal | |
Product Placement |