Bloque 1: Introducción

Tools

🐍 Python
🔢 Numpy
🐼 Pandas

Exploratory Data Analysis

📊 Análisis Univariante
📈 Análisis Bivariante
❓ Missing values
🤝 Análisis Multivariante (Correlaciones)
🌀 Dimensionality Red. (PCA, tSNE, UMAP)
🖐️ EDA interactivo (Altair y Plotly)
🤖 EDA automático (Pandas Profile y SweetViz)

Introducción al Machine Learning

Definir el problema y métrica
Obtener datos de entrenamiento y validación
Preprocesar datos
Seleccionar modelo
Optimización de hiperparámetros
Metrics

Bloque 2: Modelos de ML/DL

Tree-based models

🌳 Decision Tree (CART, C4.5, M5)
🌳 Random Forest & Extra Trees
🌳 Gradient Boosting (XGBoost, LGBM, CatBoot)

Linear models

Linear Regression
Logistic Regression
Regularization (Ridge, Lasso, ElasticNet)
Polynomial Regression
Generalized Additive Model (GAM)

Neural Networks

Multi Layer Perceptron (MLP)
Convolutional Neural Network (CNN, ResNet)
Recurrent Neural Network (RNN, LSTM, GRU)
Transformer (BERT, GPT, TabNet)
🔧 Hyperparameters
🥪 Layers Glossary

Ensembling

Weighted average, Majority vote,...

Bloque 3: Aplicaciones reales de ML/DL

Tabular

🚗 Precio de coches de 2a mano

Time Series

Prophet (Walmart)
Prophet (Medium)
TSFresh + Sklearn

Collaborative filtering

Natural Language Processing (NLP)

Bag of Words + LogRegr with Sklearn
TFIDF + LogRegr with Sklearn

👀 Image recognition

🔠 Image classification (🐶 pets dataset 🐱)
🔲 Object detection
🌌 Metric Learning
👨 Face identification (Metric Learning)
🔍 CNN explainability
⬇️ Download images
🔤 Optical Character Recognition (OCR)

🔈 Audio

🔈 Mel Spectogram
🔈 Audio classification (with data aug)

🎨 Image generation

✂️ Semantic Segmentatition
✂️👩‍💼 Binary Segmentation (Portrait mode)
🔲✂️ Instance Segmentatition
GANs
🖼️🪄 Image enhacement
🦯 Depth Segmentation
📃📄 Document unwarp

🎥 Video

〰️ Object Tracking
〰️ Optical Flow
Background Removal
Product Placement