Bloque 1: Introducción
Tools |
|
---|---|
🐍 Python | |
🔢 Numpy | |
🐼 Pandas |
Introducción al Machine Learning |
|
---|---|
Definir el problema y métrica | |
Obtener datos de entrenamiento y validación | |
Preprocesar datos | |
Seleccionar modelo | |
Optimización de hiperparámetros | |
Metrics |
Bloque 2: Modelos de ML/DL
Tree-based models |
|
---|---|
🌳 Decision Tree (CART, C4.5, M5) | |
🌳 Random Forest & Extra Trees | |
🌳 Gradient Boosting (XGBoost, LGBM, CatBoot) |
Linear models |
|
---|---|
Linear Regression | |
Logistic Regression | |
Regularization (Ridge, Lasso, ElasticNet) | |
Polynomial Regression | |
Generalized Additive Model (GAM) |
Neural Networks |
|
---|---|
Multi Layer Perceptron (MLP) | |
Convolutional Neural Network (CNN, ResNet) | |
Recurrent Neural Network (RNN, LSTM, GRU) | |
Transformer (BERT, GPT, TabNet) | |
🔧 Hyperparameters | |
🥪 Layers Glossary |
Ensembling |
|
---|---|
Weighted average, Majority vote,... |
Bloque 3: Aplicaciones reales de ML/DL
Tabular |
|
---|---|
🚗 Precio de coches de 2a mano |
Time Series |
|
---|---|
Prophet (Walmart) | |
Prophet (Medium) | |
TSFresh + Sklearn |
Collaborative filtering |
---|
Natural Language Processing (NLP) |
|
---|---|
Bag of Words + LogRegr with Sklearn | |
TFIDF + LogRegr with Sklearn |
🔈 Audio |
|
---|---|
🔈 Mel Spectogram | |
🔈 Audio classification (with data aug) |
🎨 Image generation |
|
---|---|
✂️ Semantic Segmentatition | |
✂️👩💼 Binary Segmentation (Portrait mode) | |
🔲✂️ Instance Segmentatition | |
GANs | |
🖼️🪄 Image enhacement | |
🦯 Depth Segmentation | |
📃📄 Document unwarp |
🎥 Video |
|
---|---|
〰️ Object Tracking | |
〰️ Optical Flow | |
Background Removal | |
Product Placement |