
Bloque 1: Introducción
Tools |
|
|---|---|
| 🐍 Python |
|
| 🔢 Numpy |
|
| 🐼 Pandas |
|
Introducción al Machine Learning |
|
|---|---|
| Definir el problema y métrica | |
| Obtener datos de entrenamiento y validación | |
| Preprocesar datos | |
| Seleccionar modelo | |
| Optimización de hiperparámetros | |
| Metrics |
Bloque 2: Modelos de ML/DL
Tree-based models |
|
|---|---|
| 🌳 Decision Tree (CART, C4.5, M5) |
|
| 🌳 Random Forest & Extra Trees |
|
| 🌳 Gradient Boosting (XGBoost, LGBM, CatBoot) |
|
Linear models |
|
|---|---|
| Linear Regression |
|
| Logistic Regression |
|
| Regularization (Ridge, Lasso, ElasticNet) |
|
| Polynomial Regression |
|
| Generalized Additive Model (GAM) |
|
Neural Networks |
|
|---|---|
| Multi Layer Perceptron (MLP) |
|
| Convolutional Neural Network (CNN, ResNet) | |
| Recurrent Neural Network (RNN, LSTM, GRU) | |
| Transformer (BERT, GPT, TabNet) | |
| 🔧 Hyperparameters | |
| 🥪 Layers Glossary |
Ensembling |
|
|---|---|
| Weighted average, Majority vote,... |
Bloque 3: Aplicaciones reales de ML/DL
Tabular |
|
|---|---|
| 🚗 Precio de coches de 2a mano |
|
Time Series |
|
|---|---|
| Prophet (Walmart) |
|
| Prophet (Medium) |
|
| TSFresh + Sklearn |
|
Collaborative filtering |
|---|
Natural Language Processing (NLP) |
|
|---|---|
| Bag of Words + LogRegr with Sklearn |
|
| TFIDF + LogRegr with Sklearn |
|
🔈 Audio |
|
|---|---|
| 🔈 Mel Spectogram |
|
| 🔈 Audio classification (with data aug) |
|
🎨 Image generation |
|
|---|---|
| ✂️ Semantic Segmentatition |
|
| ✂️👩💼 Binary Segmentation (Portrait mode) |
|
| 🔲✂️ Instance Segmentatition | |
| GANs | |
| 🖼️🪄 Image enhacement | |
| 🦯 Depth Segmentation | |
| 📃📄 Document unwarp |
🎥 Video |
|
|---|---|
| 〰️ Object Tracking | |
| 〰️ Optical Flow | |
| Background Removal | |
| Product Placement |